Types of Matrix
| Row Matrics | ( 1 2 3) | 
| Column Matrics |    1 2 3  | 
| Square Matrics (m=n) |  1   2 3 4  | 
| Diagonal Matrics |    1   0 0 2 1 0 0 0 2 0 0 0 3  | 
| Identity Matrics or Unit Matrics  |  4  0  0
       0 4 0 0 0 4  | 
| Transpose of the Matrics |    A= 1 2 3 4 AT = 1 3 2 4  | 
Symmetric Matrics
A Square Matrics "A" is said to be a symmetric Matrics is the Transpose of the Matrics is equal to the "A-Matrix".
At = A
Example:
        1   4    6
A = 4   2   -5
       6   -5   3
         1   4    6
At =  4   2    -5
        6   -5    3
At  =  A
Skew Symmetric Matrix
A Square matrix "A" is said to be a Skew symmetric of the transpose as the matrix is equal to -A.
Example:
At  =  -A
0 -4 6
A = 4 0 -5
-6 5 0
0 4 6
At = -4 0 -5
-6 5 0
At = -A
0 -4 6
A = 4 0 -5
-6 5 0
0 4 6
At = -4 0 -5
-6 5 0
At = -A
Hermitian Matrix
A Square Matrix "A" is said to be Hermitian, if the conjugate transpose of the matrix is equal to the matrix itself 
Example:
_
At = A
1 4+i 6i
A= 4i 2 -5
-6i -5 3
_ 1 4i 6i
A= 4+i 2 -5
-6i -5 3
_ 1 4+i 6i
At = 4i 2 -5
-6i -5 3
_
At = A
Skew Hermitian Matrix
A square matrix "A" is said to be skew Hermitian of the conjugate of transpose of the matrix is equal to   
                                                _          
At  =  -A
Example:
0 4+i -1+6i
A= 4+i 2 -5
                         1+6i    -5    0                
_ 0 -4-i -1-6i
A= 4-i 0 -5
                     1+6i    -5     0        
_ 0 -4-i 1-6i
At = -4-i 0 5
                            -1-6i    -5    0                
                                               _          
At  =  -A
Orthogonal Matrix:
A Square matrix "A" is said to be orthogonal matrix
AAt =I 
No comments:
Post a Comment